DOSSIER TECHNIQUE

ROBOT TONDEUR

Boîtier de commande extractible

Batterie 24V
SOMMAIRE

1. PRESENTATION GENERALE .. 3
 1.1. Mise en situation ... 3
 1.2. Fonctionnement de la partie opérative 4
 1.3. Photographies et modélisation des pièces principales de la PO 5
 1.4. Fonctionnement de la partie commande 7
 1.5. Photographies de la PC .. 8

2. ANALYSE ET EXPRESSION DU BESOIN ... 9
 2.1. Analyse du besoin ... 9
 2.2. Problématique ... 9
 2.3. Expression du besoin ... 9
 2.4. Validation du besoin ... 10
 2.5. Identification des fonctions de service 10

3. Présentation de la solution industrielle ... 12
 3.1. Description des chaînes d’énergie ... 12
 3.1.1. transmission de puissance aux roues motrices 12
 3.1.2. Caractéristiques du moteur électrique des roues motrices 13
 3.1.3. Caractéristiques du réducteur ... 14
 3.1.4. Description et rôle de la roue avant (roue “jockey”) 16
 3.1.5. Système de coupe .. 17
 3.2. Modélisation des chaînes d’énergie et d’information 19
 3.3. Analyse fonctionnelle .. 19

4. PRESENTATION DE LA SOLUTION DIDACTISEE 20
 4.1. Berceau didactisé ... 20
 4.2. Détails du berceau didactisé ... 21

5. Présentation de la maquette de commande (ponts en H) des moteurs de roues 22
 5.1. Présentation globale .. 22
 5.2. Présentation plus détaillée ... 22
1. PRESENTATION GENERALE

1.1. Mise en situation

La tondeuse robot RL500 permet la tonte en autonomie complète d’une pelouse dont la surface maximum de la zone de tonte peut avoisiner 250 m2. Pour une surface supérieure, plusieurs zones de tonte peuvent être définies.

Chaque zone de tonte est délimitée par un fil électrique périphérique tendu à même le sol et alimenté par un boîtier électronique (commutateur de périmètre).

La mise en service du commutateur de périmètre permet l’établissement d’un champ magnétique reconnaissable par la tondeuse robot.

Les zones de tonte interdites (parterre de fleurs, piscine, bassins, etc.) sont également délimitées par un champ magnétique. Les obstacles pleins (arbres, murs, etc.) sont eux directement évités par la tondeuse robot (détecteurs dans les pare-chocs).

Après une initialisation lors de la première mise en service, la tondeuse robot commence par tondre la périphérie de la zone de tonte avant de tondre de manière aléatoire le reste de la zone délimitée.

La durée de tonte dépend de la surface et de la configuration de la zone de tonte (environ 1h pour 100m2). Cette durée sera programmée après avoir effectué un ou plusieurs essais.

Le procédé « mulching » permet de broyer l’herbe coupée avant qu’elle ne retombe et évite le ramassage et le stockage des déchets de tonte tout en assurant un engrais naturel.
1.2. Fonctionnement de la partie opérative

La tondeuse robot est munie de deux roues motrices arrières et d’une roue “folle” à l’avant tournant librement sur elle même de type “jockey”.

Les deux roues motrices arrières sont toutes les deux motorisées de manière indépendante ce qui permet de faire tourner la tondeuse sur elle même en faisant tourner les deux moteurs dans un sens différent (système “char”).

Les roues motrices sont montées dans un berceau dont la position par rapport au châssis de la tondeuse est réglable de manière à augmenter ou diminuer la hauteur de tonte.

La position en hauteur de la roue “jockey” par rapport au châssis de la tondeuse est également réglable de manière à obtenir en association avec le réglage du berceau différentes hauteurs de tonte.

La coupe est assurée par 3 lames motorisées de manière indépendante ce qui permet d’obtenir une largeur de tonte de 56 cm.
1.3. Photographies et modélisation des pièces principales de la PO

Modélisation sous Solidworks : berceau complet.sldasm
Eclaté du berceau complet

3 lames de coupe

2 roues motrices

Roue “jockey”
1.4. Fonctionnement de la partie commande

La tondeuse robot possède une “carte mère” regroupant les différentes fonctions de puissance et de commande.

Les seuls éléments décentralisés de cette carte mère sont les différents capteurs qui renseignent la partie commande sur l’état du système ou les événements qui se produisent pendant le fonctionnement.

Un boîtier de commande permet de configurer les paramètres de tonte et de déplacer la tondeuse soit pour tondre manuellement ou pour amener la tondeuse sur la zone de tonte.

Pour des explications de fonctionnement plus détaillées, voir le “Manuel de l’utilisateur” fourni par le constructeur et donné avec le dossier d’accompagnement de la tondeuse.
1.5. Photographies de la PC

Carte mère

Brain

Compass

Boîtier de commande
2. **ANALYSE ET EXPRESSION DU BESOIN**

2.1. Analyse du besoin

La tonte d’une pelouse est un travail long, fastidieux et répétitif souvent synonyme de perte de temps. Cette perte de temps ne se limite pas uniquement à la tonte elle-même mais également à l’entretien de la tondeuse, au stockage et à l’élimination des déchets de tonte.

L’idéal ne serait-il pas d’avoir une tondeuse nécessitant peu d’entretien et se chargeant du travail à votre place ?

2.2. Problématique

Tondre une pelouse de manière autonome en tenant compte de sa configuration intrinsèque et en nécessitant peu de préparation et d’entretien.

2.3. Expression du besoin

Point de vue retenu :
- Contexte : **Constructeur**
- Produit : **Tondeuse robot RL.500**
- Spécification selon un point de vue : **Utilisateur**
- Expression du besoin : **Point de vue de l’utilisateur**

A qui rend-il service ?

<table>
<thead>
<tr>
<th>Aux utilisateurs</th>
<th>Sur la pelouse</th>
</tr>
</thead>
</table>

Dans quel but ?

Tondre la pelouse
2.4. Validation du besoin

Pourquoi le besoin existe-t-il ?

Pour tondre une pelouse sans effort et sans perte de temps.

<table>
<thead>
<tr>
<th>Comment pourrait-il disparaître ?</th>
<th>Comment pourrait-il évoluer ?</th>
</tr>
</thead>
<tbody>
<tr>
<td>• Par l’utilisation d’une pelouse « naturelle » dont la pousse serait très limitée.</td>
<td>• Par l’augmentation de l’autonomie (donc de la surface de tonte).</td>
</tr>
<tr>
<td></td>
<td>• Par la recharge de la batterie de manière autonome.</td>
</tr>
<tr>
<td></td>
<td>• Par une programmation et un fonctionnement à commande vocale.</td>
</tr>
</tbody>
</table>

2.5. Identification des fonctions de service

FP1 : Tondre la pelouse.
FP2 : S’adapter à la configuration du terrain.
FC1 : Recharger la batterie.
FC2 : S’orienter.
FC3 : Etre facile d’utilisation.
FC4 : Ne pas être perturbé par des champs magnétiques extérieurs.
FC5 : Etre esthétique.
FC6 : Etre facilement transportable.
FC7 : Avoir une autonomie suffisante.
Diagramme FAST

FP 1 → TONDRE LA PELOUSE

- FT1 → Communiquer avec l'utilisateur → Boîtier de commande
- FT2 → Gérer → Carte mère
- FT3 → Déplacer la tondeuse → 2 moteurs CC + 2 roues motrices avec réducteurs + 1 roue jockey
- FT4 → Couper et broyer l’herbe → 3 moteurs CC + 3 lames
- FT5 → Rester dans la zone de tonte → 4 senseurs
- FT6 → Eviter les obstacles → Détecteurs dans le pare-chocs
- FT7 → Acquérir l’information fréquence de rotation de la roue → Capteur odomètre
- FT8 → Assurer la sécurité → Capteur de sécurité au niveau de la roue jockey
3. Présentation de la solution industrielle

3.1. Description des chaînes d'énergie

3.1.1. transmission de puissance aux roues motrices

La chaîne cinématique de transmission de puissance aux deux roues motrices forme un sous-ensemble indépendant monté dans un berceau (voir photo ci-dessous).

Cette configuration permet un démontage facile du sous-ensemble “berceau” complet de la coque permettant ainsi une accessibilité et une interchangeabilité maximum.

Chaque roue motrice est indépendante et possède sa propre chaîne cinématique de transmission de puissance (voir chaîne d’énergie ci-dessous).
3.1.2. Caractéristiques du moteur électrique des roues motrices

Spécifications techniques du moteur électrique par le constructeur

Motor tested rapidly to prevent significant temperature rise.

At a constant voltage of 24.00 Volts

with a circuit resistance of 0.360 Ohms

(At the ambient temperature of 25–30 deg C)

At No Load

- Speed: 2828 rpm
- Current: 0.273 Amp

At Stall (Extrapolated)

- Torque: 746.08 m-Nm
- Current: 10.17 Amp

At Maximum Efficiency

- Efficiency: 66.76 %
- Torque: 164.45 m-Nm
- Speed: 2432 rpm
- Current: 1.66 Amp
- Output: 26.59 Watts

At Maximum Power

- Torque: 373.04 m-Nm
- Speed: 1414 rpm
- Current: 5.22 Amp
- Output: 55.20 Watts

Characteristics

- Torque Constant: 75 3500 m-Nm/Amp
- Dy. Resistance: 2.3590 Ohms
- Motor Regulation: 3.7900 Rpm/m-Nm
3.1.3. Caractéristiques du réducteur

Le réducteur est composé de roues et de pignons à denture droite. Il possède 3 étages de réduction.
Les roues et les pignons sont repérés de manière identique sur la photo du réducteur et sur son schéma cinématique (ainsi que dans le tableau des caractéristiques des engrenages).

Photo du réducteur

Capteur odomètre à effet Hall
Schéma cinématique minimal:

\[
r_1 = \frac{Z_1}{Z_2} = 0.207 \\
r_2 = \frac{Z_3}{Z_4} = 0.268 \\
r_3 = \frac{Z_5}{Z_6} = 0.3
\]

Rapport de réduction global = \(r_1 \times r_2 \times r_3 = 0.0166428 \) (environ 1/60)

Caractéristiques des engrenages

<table>
<thead>
<tr>
<th>Nombre de dents</th>
<th>Module (m)</th>
<th>Diamètre primitif (d)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pignon 1</td>
<td>18</td>
<td>1.25</td>
</tr>
<tr>
<td>Roue 2</td>
<td>87</td>
<td>1.25</td>
</tr>
<tr>
<td>Pignon 3</td>
<td>22</td>
<td>1.5</td>
</tr>
<tr>
<td>Roue 4</td>
<td>82</td>
<td>1.5</td>
</tr>
<tr>
<td>Pignon 5</td>
<td>18</td>
<td>2</td>
</tr>
<tr>
<td>Roue 6</td>
<td>60</td>
<td>2</td>
</tr>
</tbody>
</table>

Moteur électrique
3.1.4. Description et rôle de la roue avant (roue “jockey”)

La roue avant est une roue pivotant librement autour d’un axe vertical. Elle peut également translater le long de cet axe (liaison pivot glissant) lorsque la tondeuse est soulevée ce qui interrompt l’alimentation des moteurs de coupe assurant ainsi une sécurité de fonctionnement.

Le guidage de cette roue jockey est placé dans une douille en liaison glissière hélicoïdale indexée avec le châssis de la tondeuse ce qui permet en vissant et en dévissant cette douille d’obtenir une hauteur de coupe réglable (6 hauteurs de coupe possibles de 20 à 76mm par plage de 6mm). Ces hauteurs de coupe sont à combiner avec le réglage de la hauteur du berceau des roues arrières motrices pour obtenir la hauteur de coupe désirée (3 réglages possibles par plage de 15mm).

Photos de la roue jockey

Vue extérieure

Douille avec rainure d’indexage
Roue jockey
3.1.5. **Système de coupe**

Le système de coupe de la tondeuse robot est constitué de 3 lames motorisées de manière indépendante dont les surfaces de travail se complètent pour obtenir une largeur de coupe de **56cm**, ce qui donne une largeur de coupe supérieure à celles proposées par les tondeuses de la même catégorie.

Les moteurs entraînant chacune des trois lames sont les mêmes que ceux utilisés pour les roues motrices (voir caractéristiques de ces moteurs au chapitre 3.1.2.).

Des photos de l’intérieur de la tondeuse et de la vue de dessous extérieure permettent de voir d’une part, l’implantation des moteurs sur la coque, et d’autre part le système de clipsage des lames permettant un démontage rapide afin de changer ou d’affûter les lames.

Remarquer sur la vue de dessous extérieure la forme particulière (sphérique) des logements des lames facilitant le brassage et le broyage de l’herbe coupée (mulching). Ce procédé permet d’éviter de ramasser l’herbe coupée tout en assurant un bon engrais naturel pour la pelouse.
Vue intérieure de la tondeuse

1 : senseur arrière gauche
2 : senseur avant gauche
3 : senseur avant droit
4 : senseur arrière droit
5 : capteur de l’odomètre gauche
6 : capteur de l’odomètre droit
7 : moteur de tonte gauche
8 : moteur de tonte central
9 : moteur de tonte droit
10 : moteur d’avance gauche
11 : moteur d’avance droit
12 : connecteur du boîtier de commande
13 : capteur de sécurité de la roue avant jockey

Détection du champ magnétique
Fréquence de rotation des roues

DOSSIER TECHNIQUE ROBOT TONDEUR - Page 18 sur 22
3.2. Modélisation des chaînes d’énergie et d’information

3.3. Analyse fonctionnelle

Niveau A-0
4. PRESENTATION DE LA SOLUTION DIDACTISEE

4.1. Berceau didactisé

Le berceau de la tondeuse comportant la transmission de puissance des deux roues motrices (moteur + réducteur + capteur + roue) est vendu en option.

Les moteurs peuvent être commandés par la même carte de commande que celle décrite précédemment ou directement par une alimentation stabilisée 24 Volts.

Ce berceau est également placé sur un support permettant de régler le couple résistant et d’observer par la transparence de ses carters l’architecture interne de la tondeuse.

Ce sous-système permet de travailler sur la transmission de puissance, la cinématique, la commande des moteurs à courant continu et l’étude du signal du capteur de l’odomètre.

Il permet également d’étudier le réglage de la hauteur de coupe par le déplacement du berceau par rapport au châssis.
4.2. Détails du berceau didactisé

Maquette pédagogique berceau

Berceau de la tondeuse

Les 2 moteurs à courant continu entraînant les 2 roues

Réducteur à engrenages

Bornes d’alimentation du moteur gauche

Bornes de sortie des capteurs odomètres droit et gauche

Bornes Alimentation des capteurs odomètres en 5 volts

Bornes d’alimentation du moteur droit

Sous-système mis en « boîte »

Capteur odomètre (mesure de la vitesse)
5. Présentation de la maquette de commande (ponts en H) des moteurs de roues

5.1. Présentation globale

Joystick à actionner vers :
⇒ Av (avance de la tondeuse),
⇒ Ar (marche arrière),
⇒ D (la tondeuse tourne à droite),
⇒ G (la tondeuse tourne à gauche).

Réglage de la vitesse :
Bouton vitesse PWM

5.2. Présentation plus détaillée

Alimentation de la maquette en 24V sur la partie arrière

Bornes servant à câbler la partie commande du moteur droit (commande PWM)

Cde T5 : commande du transistor T5 (exemple)
⇒ Borne du haut (sortie de la commande en PWM)
⇒ Borne du bas (commande de l’interrupteur T5)

Bornes d’alimentation du moteur gauche

En ce qui concerne la commande du moteur gauche, on a plusieurs possibilités de câblage pour la commande des interrupteurs statiques du pont en H :
- si on relie par un cavalier Cde T2 à 0, l’interrupteur T2 sera ouvert (voir image),
- si on relie Cde T2 à 1, T2 sera fermé,
- si on relie Cde T2 à PWM, l’interrupteur T2 sera fermé périodiquement (commande hachée pour faire varier la vitesse du moteur).